

Are domestic load profiles stable over time? An attempt to identify target households for demand side management campaigns

Hông-Ân Cao, Christian Beckel, Thorsten Staake Energieinformatik, Vienna, November 12-13, 2013



- 1. Motivation and Problem Statement
- 2. Related Work
- 3. Methods

Outline

- 4. Results
- 5. Summary
- 6. Future Work
- 7. Q&A



## **1. Motivation and Problem Statement**

- 2. Related Work
- 3. Methods

**Outline** 

- 4. Results
- 5. Summary
- 6. Future Work
- 7. Q&A



- Power plants (over-) dimensioned for peak demand
  - 15% of generation in Massachusetts used less than 88h/year
- Potential for utility companies:
  - Use fine-grained data acquired by smart-meters
  - Replace synthetic load profiles
  - Determine characteristic load profiles
  - Identify costly behaviors through consumption peaks
  - Target and address relevant segments of households





• Goal:

- Evaluate the range of consumption profiles amongst the households (characteristics, distribution of each profile, etc.)
- Identify "hurtful" (i.e. peak demand) consumption patterns
- Measures to mitigate peak consumption through load shifting initiatives on targeted segments of customers:
  - Information on utility bills
  - Offer different tariffs
  - Apply behavioral cues
- Only use load curves → clustering
- Set up clustering framework



- Evaluate precision of clustering to identify peak consumption
- Usability (integration in web portal) requires on-the-fly cluster membership decision



## **1. Motivation and Problem Statement**

## 2. Related Work

3. Methods

Outline

- 4. Results
- 5. Summary
- 6. Future Work
- 7. Q&A



Load forecasting

**Related Work** 

 $\rightarrow$ 

- Supervised learning to extract side information:
  - Classification of features (size of dwelling, etc.)

## Clustering of consumption data:

- No focus on distinctiveness of clusters obtained
- No focus on peaks
- Smaller datasets used









- **1. Motivation and Problem Statement**
- 2. Related Work

## 3. Methods

- 4. Results
- 5. Summary
- 6. Future Work
- 7. Q&A

## **Methods: Data Mining Best Practices**





| Start date | End date | # Days | # Weeks | Removed | Total   |
|------------|----------|--------|---------|---------|---------|
| 08/17/09   | 09/13/09 | 28     | 4       | 651     | 118271  |
| 08/17/09   | 10/31/10 | 287    | 41      | 720     | 118300  |
| 10/26/09   | 11/22/09 | 28     | 4       | 7153    | 1212138 |
| 10/26/09   | 12/31/10 | 215    | 31      | 7257    | 908177  |

## Methods: Data Mining Best Practices



- Data formatting:
  - Average weekday data
  - Normalize the data
- Clustering:

- 4 weeks of training data
- Filtering the curve
- Clustering 48-dim vectors vs.
  dimension reduction
  (22 features: mainly statistical data, peak information)
- Different algorithms and distance measures
- Variation of the number of clusters (5 to 14)



| Clustering technique | Distance    |
|----------------------|-------------|
| SOM + K-Means        | Manhattan   |
| SOM + K-Means        | Euclidean   |
| K-Means              | Manhattan   |
| K-Means              | Euclidean   |
| K-Means              | Correlation |
| K-Means              | Cosine      |
| Hierarchical         | Manhattan   |
| Hierarchical         | Euclidean   |
| Hierarchical         | Correlation |
| Hierarchical         | Cosine      |





- **1. Motivation and Problem Statement**
- 2. Related Work
- 3. Methods

## 4. Results

- 5. Summary
- 6. Future Work
- 7. Q&A

# **Results: Quantitative and Qualitative Evaluation**



| Type of clustering | Algorithm     | Distance    | Filt. Window | # Clusters | Peak Match Score | Distinctiveness Score |
|--------------------|---------------|-------------|--------------|------------|------------------|-----------------------|
| Whole clust.       | K-Means       | Correlation | 5            | 14         | 0.2199           | 290                   |
| Whole clust.       | K-Means       | Correlation | 5            | 13         | 0.21554          | 236                   |
| Whole clust.       | K-Means       | Correlation | 4            | 14         | 0.21425          | 290                   |
| Whole clust.       | K-Means       | Correlation | 5            | 12         | 0.21182          | 190                   |
| Whole clust.       | K-Means       | Correlation | 4            | 13         | 0.20963          | 236                   |
| Whole clust.       | K-Means       | Correlation | 5            | 11         | 0.2059           | 162                   |
| Whole clust.       | K-Means       | Correlation | 4            | 12         | 0.20321          | 204                   |
| Whole clust.       | SOM + K-Means | Euclidean   | 5            | 14         | 0.20179          | 273                   |
| Whole clust.       | K-Means       | Cosine      | 5            | 14         | 0.20156          | 260                   |
| Whole clust.       | SOM + K-Means | Manhattan   | 5            | 14         | 0.19824          | 259                   |
| Whole clust.       | K-Means       | Correlation | 4            | 11         | 0.19778          | 174                   |
| Whole clust.       | K-Means       | Euclidean   | 5            | 13         | 0.19673          | 192                   |
| Whole clust.       | K-Means       | Correlation | 3            | 14         | 0.19624          | 290                   |
| Whole clust.       | SOM + K-Means | Manhattan   | 5            | 13         | 0.19614          | 230                   |
| Whole clust.       | K-Means       | Cosine      | 5            | 13         | 0.19597          | 210                   |
| Whole clust.       | K-Means       | Correlation | 2            | 14         | 0.19548          | 276                   |
| Whole clust.       | K-Means       | Cosine      | 5            | 12         | 0.1951           | 192                   |
| Whole clust.       | SOM + K-Means | Euclidean   | 5            | 13         | 0.19502          | 230                   |
| Whole clust.       | K-Means       | Correlation | 5            | 10         | 0.1946           | 136                   |
| Whole clust.       | K-Means       | Correlation | 2            | 13         | 0.19417          | 238                   |

#### **Results: The Aggregating Effect of the Euclidean Distance**





⇒

### **Results: Distinct Peaks Throughout The Day**





→

# Results: Validation of The Results on the Test Set





November 14, 2013

→



 $\rightarrow$ 



- **1. Motivation and Problem Statement**
- 2. Related Work
- 3. Methods
- 4. Results

## 5. Summary

- 6. Future Work
- 7. Q&A



- Defined a pattern to be identified in the consumption pattern (i.e. peaks):
  - Potential to target "hurtful" behaviors at different moments of the day
- Evaluated :

Summary

- Most common clustering algorithms and distance measures
- Use of all the available consumption data vs. aggregated information
- Possible to establish distinctive "reference" consumption patterns
- Deciding cluster membership is a quick operation
  - Can be performed on the fly





- **1. Motivation and Problem Statement**
- 2. Related Work
- 3. Methods
- 4. Results
- 5. Summary
- 6. Future Work
- 7. Q&A



### • Time series analysis of the household cluster membership:

- MCMC for missing data

**Future Work** 

 $\rightarrow$ 

- Clustering of similar households (bag of words vs. time series approach)
  - Spectral clustering robustness
- Markov chain modeling
- Mapping survey data (household characteristics) to consumption pattern

### In collaboration with Set Energy

- Regional/cultural effect on characteristic load profiles through the usage of Swiss data
- Portal sign-up probability using machine learning and publicly available data



#### Contact

Hông-Ân Cao | Distributed Systems Group | Bits to Energy Lab | Department of Computer Science, ETH Zurich Office: +41 44 632 02 73 | E-Mail: hong-an.cao@inf.ethz.ch

#### Team

Prof. Dr. Elgar Fleisch Prof. Dr. Friedemann Mattern Prof. Dr. Thorsten Staake Dr. Tobias Graml Vojkan Tasic Verena Tiefenbeck Christian Beckel Hông-Ân Cao Felix Lossin Anna Kupfer

