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1. Motivation and Problem Statement
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Motivation and Problem Statement

= Power plants (over-) dimensioned for peak demand
— 15% of generation in Massachusetts used less than 88h/year

= Potential for utility companies:
— Use fine-grained data acquired by smart-meters
— Replace synthetic load profiles
— Determine characteristic load profiles
— Identify costly behaviors through consumption peaks
— Target and address relevant segments of households
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Motivation and Problem Statement

= Goal:

— Evaluate the range of consumption profiles amongst the
households (characteristics, distribution of each profile, etc.)

— Identify "hurtful” (i.e. peak demand) consumption patterns

— Measures to mitigate peak consumption through load shifting
initiatives on targeted segments of customers:
» Information on utility bills
= Offer different tariffs
= Apply behavioral cues

= Only use load curves - clustering

=  Set up clustering framework

= Evaluate precision of clustering to identify peak consumption

= Usability (integration in web portal) requires on-the-fly cluster
membership decision
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2. Related Work

November 14, 2013 © ETH / Univ. Bamberg / HSG Page 6



Related Work

= Load forecasting

= Supervised learning to extract side information:
— Classification of features (size of dwelling, etc.)

= Clustering of consumption data:

— No focus on distinctiveness of
clusters obhtained

Working days

— No focus on peaks
— Smaller datasets used
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3. Methods
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Methods: Data Mining Best Practices

0.35

Sunday, 6 September 2009
Thursday, 8 September 2009
~—— Thursday, 10 September 2009

= Data analysis on large dataset:
0.3- ——— Friday, 11 September 2009
— Collected in Ireland Sunday, 13 September 2009
— Over 4000 households 025
— 18 months of data

— 1 sample every 30 minutes

Consumption (kWh)

= Data cleaning o1

0.05-

0 15
Slot (h)

Start date  End date  # Days # Weeks Removed Total

08/17/09  09/13/09 28 4 651 118271
08/17/09  10/31/10 287 41 720 118300
10/26/09  11/22/09 28 4 7153 1212138
10/26/09  12/31/10 215 31 7257 908177
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Methods: Data Mining Best Practices

» Data formatting:

Average weekday data
Normalize the data

= Clustering:

4 weeks of training data
Filtering the curve

Clustering 48-dim vectors vs.
dimension reduction
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Scaled consumption
-
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0 15
Slot (h)

—— Original load curve
~—— Filtered load curve

_ : L. Clustering technique Distance
(22 featureg. mamly statistical SOM - K- Nicans

data, peak information) SOM + K-Means Euclidean
— Different algorithms and K-Means Manhattan
distance measures K-Means Enclideaa
K-Means Correlation

— Variation of the number of K-Means Cosine
clusters (5 to 14) Hierarchical Manhatan
Hierarchical Euclidean
Hierarchical Correlation

Hierarchical Cosine
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4. Results
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Results: Quantitative and Qualitative

Evaluation

Type of clustering Algorithm Distance Filt. Window  # Clusters  Peak Match Score  Distinctiveness Score
Whole clust. K-Means Correlation 5 14 0.2199 290
Whole clust. K-Means Correlation 5 13 0.21554 236
Whole clust. K-Means Correlation 4 14 0.21425 290
Whole clust. K-Means Correlation 5 12 0.21182 190
Whole clust. K-Means Correlation 4 13 0.20963 236
Whole clust. K-Means Correlation 5 11 0.2059 162
Whole clust. K-Means Correlation 4 12 0.20321 204

| Whole clust. SOM + K-Means  Euclidean 5 14 0.20179 273 |
Whole clust. K-Means Cosine 5 14 0.20156 260
Whole clust. SOM + K-Means  Manhattan 5 14 0.19824 259
Whole clust. K-Means Correlation 4 11 0.19778 174
Whole clust. K-Means Euclidean 5 13 0.19673 192

| Whole clust. K-Means Correlation 3 14 0.19624 290 ]
Whole clust. SOM + K-Means  Manhattan 5 13 0.19614 230
Whole clust. K-Means Cosine 5 13 0.19597 210
Whole clust. K-Means Correlation 2 14 0.19548 276
Whole clust. K-Means Cosine 5 12 0.1951 192
Whole clust. SOM + K-Means Euclidean 5 13 0.19502 230
Whole clust. K-Means Correlation 5 10 0.1946 136
Whole clust. K-Means Correlation 2 13 0.19417 238
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Results: The Aggregating Effect of the

Euclidean Distance
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Results: Distinct Peaks Throughout The Day
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Results: Validation of The Results on the Test
Set
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5. Summary
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Summary

= Defined a pattern to be identified in the consumption
pattern (i.e. peaks):

— Potential to target "hurtful" behaviors at different moments of
the day

= Evaluated :
— Most common clustering algorithms and distance measures

— Use of all the available consumption data vs. aggregated
information

= Possible to establish distinctive "reference"
consumption patterns

= Deciding cluster membership is a quick operation
— Can be performed on the fly
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6. Future Work
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Future Work

= Time series analysis of the household cluster membership:

MCMC for missing data

Clustering of similar households (bag of words vs. time series
approach)
= Spectral clustering robustness

Markov chain modeling

Mapping survey data (household characteristics) to consumption
pattern

= In collaboration with E®BEN Energy

Regional/cultural effect on characteristic load profiles through the
usage of Swiss data

Portal sign-up probability using machine learning and publicly
available data
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