An Optimization Approach for the Design of Time-of-Use Rates

Dr. Christoph M. Flath – Karlsruhe Institute of Technology

D-A-CH Energieinformatik 2013 Wien, 13. November 2013

1 Introduction

- 2 Optimization Model
- **3** Rate Design Results
- 4 Summary and Outlook

Market design and load flexibility are key components to cope with current power system challenges

Source: Entelios

Intelligent markets are obtained from the composition of incentives

Today's focus: An optimization approach for the design of variable retail electricity rates

Variable rates are efficient but need to account for the "human dimension"

- Wholesale prices reflect diversity, dynamics and uncertainty of power system [Keles et al. 2012]
- Variable retail rates offer a means to expose demand side to price risk [Schweppe et al. 1988]
- Two notions of rate variability:
 - Rate granularity (# time zones)
 - Rate dynamics (update interval)

- Limited acceptance of too complex rate designs [Goett et al. 2000, Gerpott and Paukert 2012]:
 - Preference for fewer rate zones (low granularity)
 - Preference for static rates (no/ low rate dynamics)
- Load automation increases acceptance [Dütschke and Paetz 2013]

Time-of-use rates can moderate rate complexity to ensure efficiency while retaining customer acceptance

Research on time-of-use rates has explored only limited design options

Rate Structure

Rate zone length, varying number of time zones and dynamics as potential design options

1 Introduction

2 Optimization Model

- 3 Rate Design Results
- 4 Summary and Outlook

Designing customized time-of-use rates is computationally complex

- Multitude of design options for rates with intermediate complexity
- Dynamic updating of rates and segment-specific rates necessitate determination of many individual rate designs

Need for efficient rate design approach

A mixed-integer optimization model for the time-of-use rate design problem

Decision variables

- Hourly price level [implicit]: $p_t \in R$
- Jump indicator [explicit]: $j_t^{+/-} \in \{0,1\}$
- Jump magnitude [explicit]: $\Delta_t^{+/-} \in R^+$

Objective function

Minimize hourly absolute deviation from

wholesale costs: $\min_{\mathbf{p}} \sum_{t \in \mathbf{T}} |p_t - c_t|$ Constraints $\forall t \in \{1, ..., T\}$:

- Rate structure: $p_t = p_{t-1} + \Delta_t^+ \Delta_t^-$
- Jump structure: $\Delta_t^{+/-} \leq j_t^{+/-} \cdot \xi$
- Granularity: $\sum_{t=1}^{T} j_t^+ + j_t^- \le Z$

Optimal rate structure can be determined by solver

Optimization program facilitates a rich set of other design constraints

• "Freeze times"

 $\Delta_t = 0 \; \forall t \in F$

- Price spread limitations $p_i p_j < \eta \ \forall i \neq j$
- Price ceilings

 $p_t < \bar{p} \ \forall t$

- Jump magnitude limitations $\Delta_t < \overline{\Delta} \; \forall t$
- Average price targets

$$\sum_{t\in T} p_t \le P$$

Facilitates the impact evaluation of different marketing and regulatory requirements

November 13th, 2013 Dr. Christoph M. Flath

1 Introduction

- 2 Optimization Model
- **3** Rate Design Results
- 4 Summary and Outlook

Various design results for different granularity levels and daily updating

November 13th, 2013 Dr. Christoph M. Flath

Rate length symmetry limits rate design potential for low granularity levels

November 13th, 2013 Dr. Christoph M. Flath

1 Introduction

- 2 Optimization Model
- **3** Rate Design Results
- 4 Summary and Outlook

Rate design is driven by data availability and provides an input for price strategy

References

- Celebi, E., & Fuller, J. (2007). A model for efficient consumer pricing schemes in electricity markets. IEEE Transactions on Power Systems, 22(1), 60–67.
- Dütschke, E., & Paetz, A.-G. (2013). Dynamic electricity pricing—Which programs do consumers prefer? *Energy Policy*, 1–9.
- Gerpott, T. J., & Paukert, M. (2013). Gestaltung von Tarifen f
 ür kommunikationsf
 ähige Messsysteme im Verbund mit zeitvariablen Stromtarifen. *Zeitschrift f
 ür Energiewirtschaft*, 1-23.
- Goett, A., Hudson, K., & Train, K. (2000). Customers' choice among retail energy suppliers: The willingness-to-pay for service attributes. *The Energy Journal*, 21(4), 1–28.
- Keles, D., Genoese, M., Möst, D., & Fichtner, W. (2012). Comparison of extended mean-reversion and time series models for electricity spot price simulation considering negative prices. *Energy Economics*, 34(4), 1012–1032.
- Oren, S. S., Smith, S. A., & Wilson, R. B. (1987). Multi-product pricing for electric power. *Energy Economics*, 9(2), 104–114.
- Reiss, P. C., & White, M. W. (2005). Household Electricity Demand, Revisited. *Review of Economic Studies*, 72(3), 853–883.
- Schweppe, F., Tabors, R., Caramanis, M., & Bohn, R. (1988). Spot pricing of electricity.