A Framework for Region-based Instrumentation of Energy Consumption of Program Executions

Simon Ostermann, Thomas S. Eiter, Vlad Nae, and Radu Prodan

Institute of Computer Science, University of Innsbruck, Austria simon@dps.uibk.ac.at

Outline

- Problem
- Solution
- Architecture
- Results
- Conclusion

Problem

- Energy efficiency is a key issue in computer science research and development
- Driving forces behind this are:
 - Growing energy consumption of computers worldwide,
 - Trend towards mobile devices
 - Green IT initiative

Problem (II)

- Techniques and technologies have been invented for energy:
 - Most of them focusing either on hardware or on software
 - Software application defines which hardware components are used -> energy of hardware
- Total energy consumption of a code execution on a specific machine depends on both the machine and on the code characteristics.

Problem (III)

- Energy measurements in the field of data centers are coarse grained
 - E.g. power-rail level, rack level,
- Difficult to collect
 - E.g. proprietary interfaces, sometimes not available to the users,
- Not associated to the codes being executed.
 - Or only available post mortem after execution

Solution

- Energy instrumentation and measurement framework that allows:
 - Implementation and easy deployment of selftuning codes in data centers.
 - Both offline and online (i.e. during execution) analyses by providing detailed energy consumption data.
 - Software program executions with a region-level granularity of measurements.

Architecture

- Client-server architecture
- Server running on different host to minimize measurement overheads
- Measurement devices communicate with server
- Clients can get measurements from server
 - Easy portable to all languages using the server-API

Architecture

Communication

Code instrumentation

```
1 #include < CPPInterface.h > // C++ Interface
3 int main(int argc, char ** argv){
   // Defining parameters for the session
   pmCreateNewSession("sessionId", "10.0.0.1", 5025);
    pmStartSession(0); // Start session on device 0
   /* Insert HERE the code to measure */
   pmStopSession();
10
    pmRetrieveResults();
11
  /* Use the desired measurements */
12
   double consumption = pmGetEnergyConsumption();
13
   pmDeleteSession();
14
15
16 }
```

Accuracy

- Measurement interval
- Workload power consumption delay
 - Measure the characteristic machine delay
- Measurement truncation
 - Pre and post measurements for each session
- Measurement aggregation functions
 - Different functions available to match different use cases: Skewing, Graph and Basic

Results: Interval comparison Measurement interval 500 ms

Measurement interval 250 ms

Results: Delay

Results: Buffering

Results: Aggregation functions

Conclusion

- Energy instrumentation and online measurement framework targeting the deployment of self-tuning codes
- Offline and online analyses by providing detailed energy consumption data for software program executions
- Region-level granularity
- Modular architecture shields the users from energy measurement hardware
- Allows the development of measurement and instrumentation code independent of the instrument's proprietary interface.
- Efficient method for increasing the accuracy of measurements for low sampling rate measurement devices (0.5 - 10 Hertz sampling frequency).
- Using Voltech PM1000+ devices we increased accuracy by 20% for measurements lasting 5 seconds and 9% for 10 seconds measurements.