A Framework for Region-based
Instrumentation of Energy
Consumption of Program Executions

Simon Ostermann, Thomas S. Eiter,
Vlad Nae, and Radu Prodan

Institute of Computer Science,
University of Innsbruck, Austria -

simon@dps.uibk.ac.at I n

info rm.a‘t.ik

innsbruck

Problem
Solution
Architecture
Results
Conclusion

Outline

Problem

* Energy efficiency is a key issue in computer
science research and development
* Driving forces behind this are:

— Growing energy consumption of computers
worldwide,

— Trend towards mobile devices

— Green IT initiative

Problem (II)

 Techniques and technologies have been
invented for energy:

— Most of them focusing either on hardware or on
software

— Software application defines which hardware
components are used -> energy of hardware
* Total energy consumption of a code execution
on a specific machine depends on both the
machine and on the code characteristics.

Problem (lI1)

* Energy measurements in the field of data
centers are coarse grained

— E.g. power-rail level, rack level,
* Difficult to collect

— E.g. proprietary interfaces, sometimes not
available to the users,

* Not associated to the codes being executed.

— Or only available post mortem after execution

Solution

* Energy instrumentation and measurement
framework that allows:

— Implementation and easy deployment of self-
tuning codes in data centers.

— Both offline and online (i.e. during execution)

analyses by providing detailed energy
consumption data.

— Software program executions with a region-level
granularity of measurements.

Architecture

Client-server architecture

Server running on different host to minimize
measurement overheads

Measurement devices communicate with
server

Clients can get measurements from server

— Easy portable to all languages using the server-API

Architecture

Data connection €———p Measurement device (1)

Electrical connection s

Bl

instrumentation

..... Measured |
Code (1)

PMServer ? .

----m< """" ;

instrumentation

..... Measured |
Code (2)

Measurement device (2)

Communication

PMClient

PMServer

Get devices

Send devices: <DevicelList>

Start session: <sessionld><deviceld>

ey

€-———————————————————— ——————————— [

Session started: <sessionKey>

Stop session: <sessionld><sessionKey>

|
|
|
|
I+
|
|
|

Measurement
Device

:| Create session

Get measurements

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
+
|

<list of values>

Get measurements

Session stopped

Retrieve values: <sessionld><sessionKey>

|
|
|
T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
=

- | <J

<value List>

>

<list of values>

free session

|
|
|
|
|
|
|
|
|
L
|
|
|
|
|
|
|
|
|
|
|
|
I

Code instrumentation

1 #include <CPPlInterface.h> // C++ Interface

2

3int main(int argc, char =*x argv){

4 // Defining parameters for the session

5 pmCreateNewSession(7sessionld”, 710.0.0.17, 5025);
6 pmStartSession(0); // Start session on device 0
7

8 /* Insert HERE the code to measure =x/

9

10 pmStopSession () ;

11 pmRetrieveResults () ;

12 /x Use the desired measurements x/

13 double consumption = pmGetEnergyConsumption () ;
14 pmDeleteSession () ;

o
n

o
—

Accuracy

Measurement interval

Workload — power consumption delay
— Measure the characteristic machine delay

Measurement truncation

— Pre and post measurements for each session

Measurement aggregation functions

— Different functions available to match different
use cases: Skewing, Graph and Basic

Watt

Watt

Results: Interval comparison

Measurement interval 500 m
200

Continuous power values
190 ¢ Measured power values - o

180 |
170 |
160 |
150 1
140

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Time (sec.)

Measurement interval 250 ms

Continuous power values
Measured power values - e

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Time (sec.)

CPU Workload in %

Watt

100

Results: Delay

80 |

60 |

40 ¢

At
+—>

20 ¢

2.5
Time (sec.)

3

3.5

4.5

200

190 |
180 |
170 1
160 |

150 1

140 |
130 |

120

1.5 2

2.5
Time (sec.)

3

3.5

4.5

Power (watt)

200
190
180
170
160
150 |
140
130
120

Results: Buffering

<

total logged measurements

<

pre buffering >

w

prel .. measurement session

n

“

>

p post buffering >

>

Whost

t

Time (sec.)

t

Power (watt)

Results: Aggregation functions

200

190 |

180 |

170 |

g graph .
} 3 skewing R
3 basic .

Session Runtime (sec.)

Conclusion

Energy instrumentation and online measurement framework
targeting the deployment of self-tuning codes

Offline and online analyses by providing detailed energy
consumption data for software program executions

Region-level granularity

Modular architecture shields the users from energy
measurement hardware

Allows the development of measurement and instrumentation
code independent of the instrument’s proprietary interface.

Efficient method for increasing the accuracy of measurements
for low sampling rate measurement devices (0.5 - 10 Hertz
sampling frequency).

Using Voltech PM1000+ devices we increased accuracy by 20%

for measurements lasting 5 seconds and 9% for 10 seconds
measurments.

