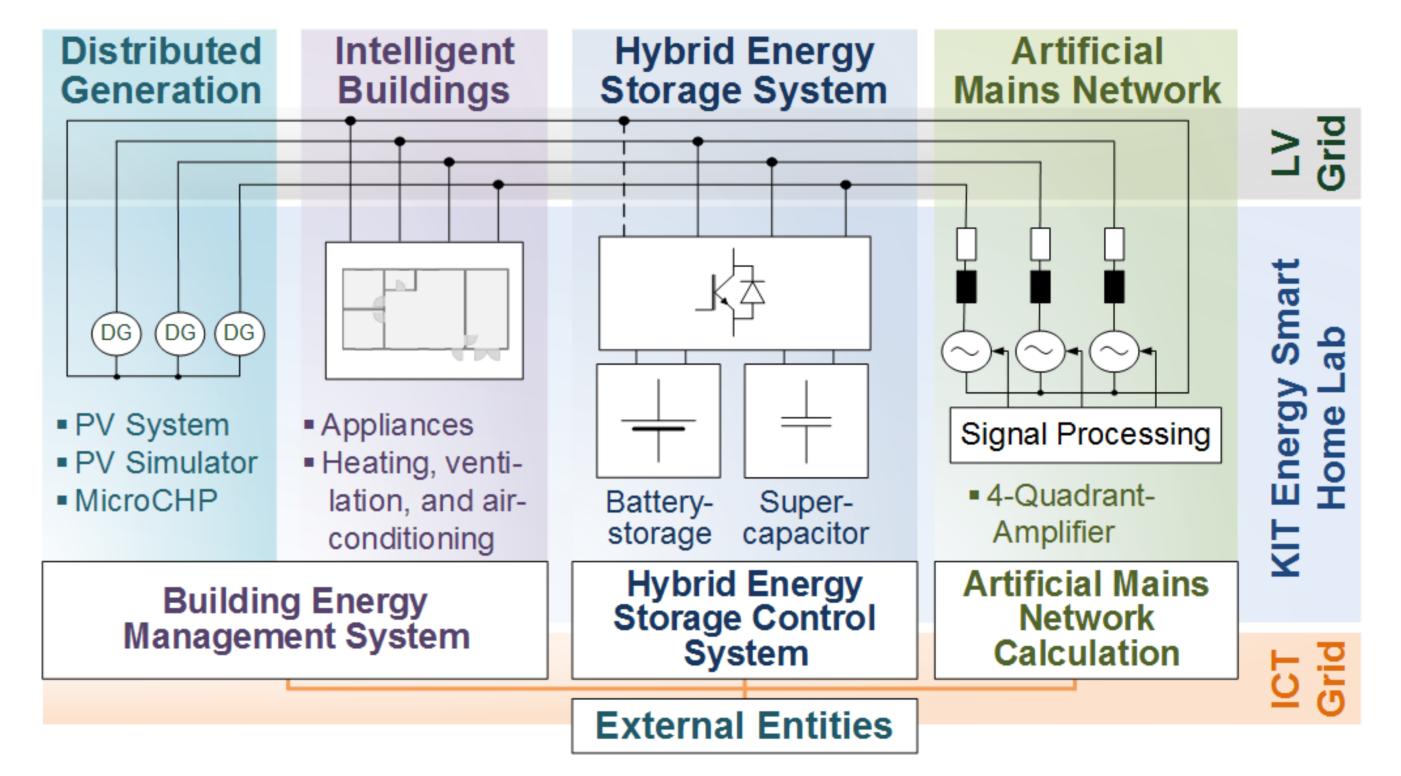


Karlsruhe Institute of Technology


Institute AIFB¹, Institute ETI², Institute IEH³

KIT Energy Smart Home Lab – Hardware-in-the-Loop Research Environment with Hybrid Energy Storage System

Sebastian Kochanneck¹ • Ingo Mauser¹ • Hartmut Schmeck¹ • Bernd Bohnet² • Michael Braun² • Sebastian Hubschneider³ • Thomas Leibfried³

Challenges in low voltage systems

- Reactive power provision and voltage stability
- Congestion handling

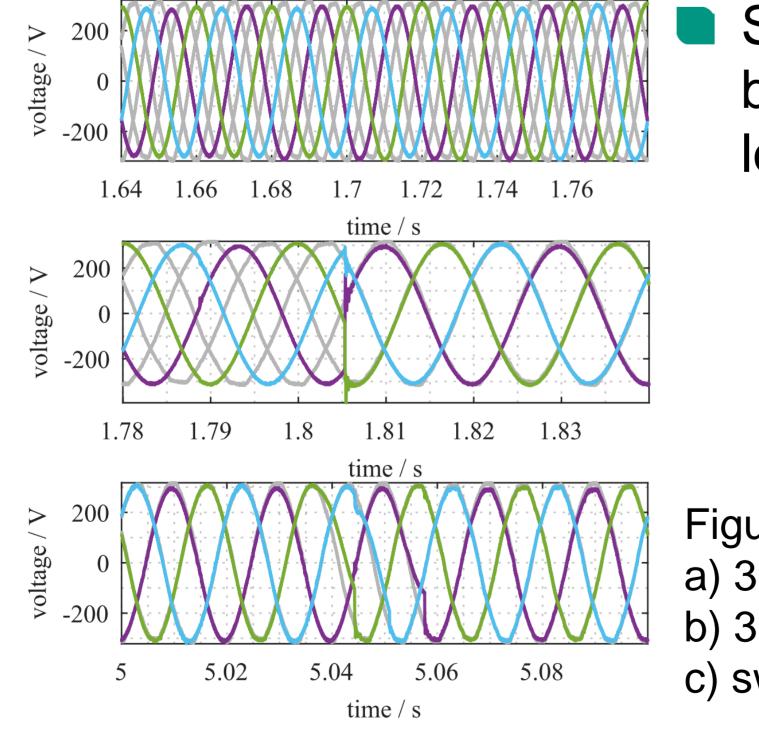
- Spinning reserve and short circuit power
- Question: How to evaluate technologies and systems for low voltage systems most closely to reality?
- Approach: Integration of hard- and software systems into one testbed for low voltage systems
 - Simulation of buildings and low voltage grids
 - Hardware-in-the-loop (HIL) studies
 - Power-hardware-in-the-loop (PHIL) studies

Figure 1: Residential Power Hardware-in-the-loop Laboratory

Hardware Equipment of the Laboratory

Table 1: Hardware Infrastructure of the Laboratory

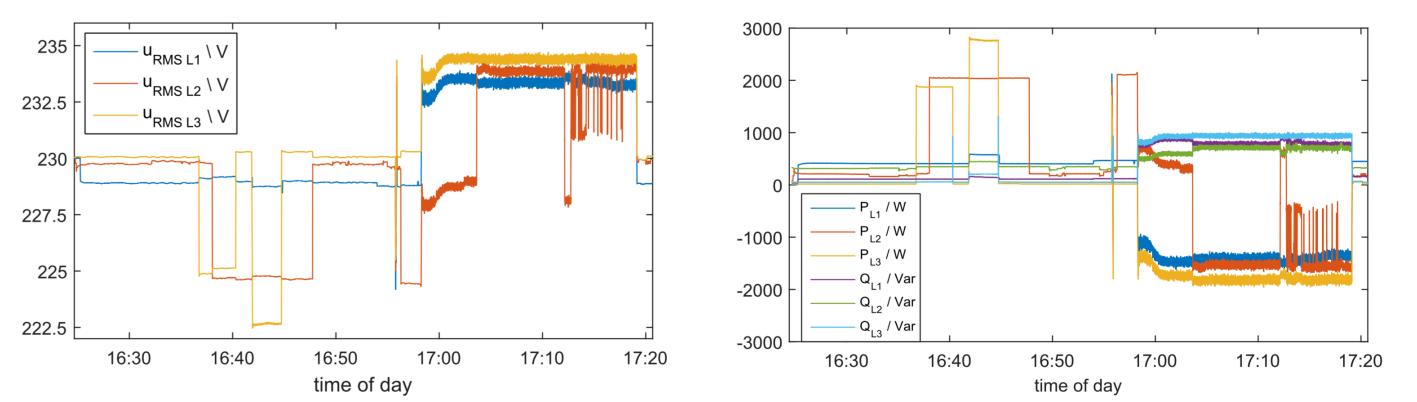
Distributed Generation			
PV panels	24x Sovello SV-T-195	4.7 kWp	
PV inverter	SMA Sunny Tripower STP 10000TL-10	10 kVA, 3-phase	
PV simulator	ET System LAB/SMS3100	3.0 kWp	
Combined heat and power plant	SenerTec Dachs G 5.5 standard	5.5 kW electrical, 12.5 kW thermal	
Appliances			
Home appliances	Miele: coffee machine, dishwasher, dryer, hob, oven, washing machine; Liebherr: deep freezer, refrigerator; other: microwave, water kettle, toaster		
Appliance gateway	Miele XGW 2000	Communication BEMS & appliances	
Heating and Air-conditioning S	ystem		
Climate controller	Kieback & Peter BMR410 and FBU410	Modbus gateway	
Hot water storage tank	SenerTec SE 750	750 liters (\approx 25 kWh for $\Delta \theta$ = 30 K)	
Insert heating element	Eltra 2NP5635-290	9 kW	
Air-conditioning inverter	Mitsubishi PUHZ-RP60VHA4	6 kW cooling capacity	
Chilled water storage tank	Custom-made	200 liters	
Phase change material	DeltaSystems DELTA-COOL 24	Melting temperature: 22–28 °C	
Hybrid Electrical Energy Storage System			
Battery	12x Hoppecke power.com HC122000	7.920 kWh (three hour discharge)	
EDLC	5x SPS MCE0010C0-0090R0TBA	40.32 kWs (per module)	
Artificial Mains Network			
4-quadrant amplifier	Spitzenberger & Spies; 3x PAS 10000/RL 4000	+30.0 kVA/−15.0 kW (U ≤ 270 V RMS)	
Grid switching box	Custom-Made	interruption-free supply switching	


Interacting Software Systems

- Organic Smart Home
 - Multi commodity energy management and simulation system
 - Management of appliances, distributed generation, and set point control for hybrid energy storage
- Hybrid energy storage control system
 - Grid Interface controller for current injections
 - Internal Hybrid Storage Control for Batteries and electric double layer capacitors (EDLC)
- Artificial mains network calculation

Density	Energy Wh / I	Power W/I
Battery	71.5	71
EDLC	1.4	1013

Table 2: Comparison of used storage components


Automated Switching from Stiff to Artificial Grid

- Smooth switching between artificial and stiff low voltage grid to
 - Iimit inrush-currents during switching

Weak Connection Point Operation

- Operating the laboratory as a solitary residential building
- Emulating an impedance with the 4-quadrant amplifier

maintain rotating field

Figure 2: Sequential adaption of a) 3-phase voltages and b) 3-phase followed by

c) switching operation to artificial mains

Figure 3: a) 3-phase voltages and b) active & reactive power at a simulated weak connection point

Gefördert durch:

Bundesministerium für Wirtschaft und Energie

aufgrund eines Beschlusse des Deutschen Bundestage We gratefully acknowledge the financial support from the German Federal Ministry for Economic Affairs and Energy (BMWi) for the project "Advanced Decentral Grid Control" (funding number "03ET7539F") within the initiative "Zukunftsfähige Stromnetze".

Contact

+49 721 608 45712

 Sebastian Kochanneck
Karlsruhe Institute of Technology - Institute for Applied Informatics and Formal Description Methods (AIFB) Kaiserstraße 89 – 76133 Karlsruhe – Germany
sebastian.kochanneck@kit.edu URL to the wellsite of the ESH

KIT – The Research University in the Helmholtz Association